

STGE50NC60VD

N-channel 50A - 600V - ISOTOP Very fast PowerMESH™ IGBT

Features

Туре	V _{CES}	V _{CE(sat)} (Max) @25°C	l _C @100°C
STGE50NC60VD	600V	2.5V	50A

- High current capability
- High frequency operation
- Low C_{RES}/C_{IES} ratio (no cross-conduction susceptibility
- Very soft ultra fast recovery antiparallel diode

Description

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH[™] IGBTs, with outstanding performances. The suffix "V" identifies a family optimized for high frequency.

Applications

- High frequency inverters
- SMPS and PFC in both hard switching and resonant topologies
- UPS
- Motor drivers

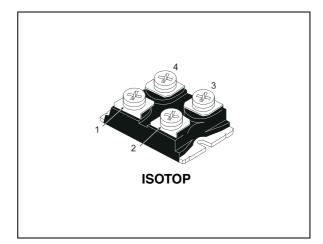
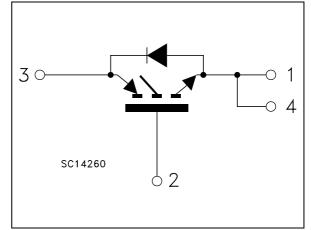



Figure 1. Internal schematic diagram

Table 1.	Device summary
	Borroo oanniary

Order code	Marking	Package	Packaging
STGE50NC60VD	GE50NC60VD	ISOTOP	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data 11
5	Revision History

1 Electrical ratings

Table 2.	Absolute maximum ratings
	Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage ($V_{GS} = 0$)	600	V
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 25^{\circ}C$	80	А
I _C ⁽¹⁾	Collector current (continuous) at T _C = 100°C	50	А
I _{CL} ⁽²⁾	Collector current (pulsed)	200	А
V _{GE}	Gate-emitter voltage	± 20	V
١ _F	Diode RMS forward current at Tc=25°C	30	А
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	260	W
T _{stg}	Storage temperature	-55 to 150	°C
Tj	Operating junction temperature	-55 10 150	0

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX}^{-T}C}{R_{THJ-C} \times V_{CESAT(MAX)}^{-T}(T_{C}, I_{C})}$$

2. Pulse width limited by Tjmax

Table 3. Thermal resistance

Symbol Parameter		Min	Тур	Мах	Unit
Rthj-case	Thermal resistance junction-case (IGBT)			0.48	°C/W
Rthj-case	nj-case Thermal resistance junction-case (diode)			1.5	°C/W
Rthj-amb	Thermal resistance junction-amb			50	°C/W

2 Electrical characteristics

(T_J = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-emitter breakdown voltage	I _C = 1mA, V _{GE} = 0	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15V, I _C = 40A V _{GE} = 15V, I _C =40A,Tc=125°C		1.9 1.7	2.5	V V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = Max rating,T _C = 25°C V _{CE} = Max rating,T _C = 125°C			150 1	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V_{GE} = ±20V, V_{CE} = 0			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15V_{,} I_{C} = 20A$		20		S

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25V, f = 1MHz, V _{GE} = 0		4550 350 105		pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V_{CE} = 390V, I _C = 40A, V_{GE} = 15V, <i>Figure 17</i>		214 30 96		nC nC nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390V, I_C = 40A$ $R_G = 3.3\Omega, V_{GE} = 15V,$ Figure 16		43 17 2060		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390V, I_C = 40A$ $R_G = 3.3\Omega, V_{GE} = 15V,$ $Tj = 125^{\circ}C$ <i>Figure 16</i>		42 19 1900		ns ns A/µs
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390V, I_C = 40A$ $R_G = 3.3\Omega, V_{GE} = 15V,$ <i>Figure 16</i>		25 140 45		ns ns ns
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390V, I_C = 40A$ $R_G = 3.3\Omega, V_{GE} = 15V,$ $Tj = 125^{\circ}C$ <i>Figure 16</i>		60 170 77		ns ns ns

 Table 6.
 Switching on/off (inductive load)

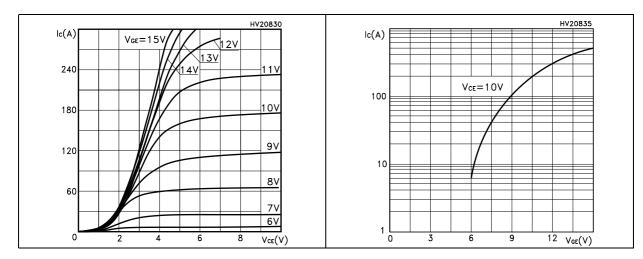
Table 7. Switching energy (inductive load)

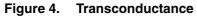
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390V$, $I_C = 40A$ $R_G = 3.3\Omega$, $V_{GE} = 15V$, <i>Figure 18</i>		330 720 1050	450 970 1420	μJ μJ μJ
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V _{CC} = 390V, I _C = 40A R _G = 3.3Ω, V _{GE} = 15V, Tj = 125°C <i>Figure 18</i>		640 1400 2040		μJ μJ μJ

 Eon is the turn-on losses when a typical diode is used in the test circuit in *Figure 18* If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C)

2. Turn-off losses include also the tail of the collector current

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _f	Forward on-voltage	I _f = 20A I _f = 20A, Tj = 125°C		1.5 1	2.2	V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _f = 20A,V _R = 40V, Tj = 25°C, di/dt = 100 A/μs <i>Figure 19</i>		44 66 3		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _f = 20A,V _R = 40V, Tj =125°C, di/dt = 100A/μs <i>Figure 19</i>		88 237 5.4		ns nC A


 Table 8.
 Collector-emitter diode



Electrical characteristics (curves) 2.1

Figure 2. **Output characteristics**

Figure 3. **Transfer characteristics**

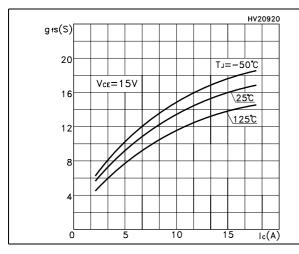
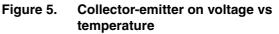



Figure 6. Collector-emitter on voltage vs collector current

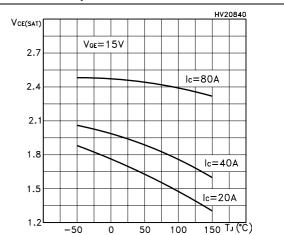


Figure 7. Normalized gate threshold vs temperature

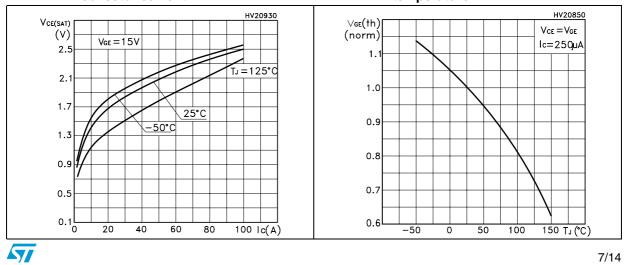
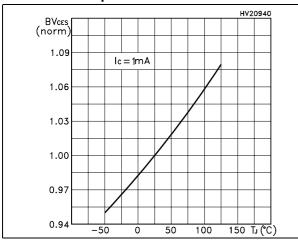



Figure 8. Normalized breakdown voltage vs temperature

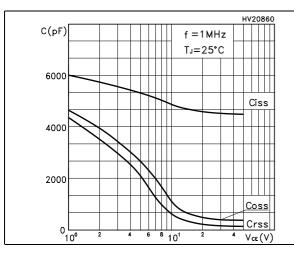


Figure 12. Total switching losses vs gate charge resistance

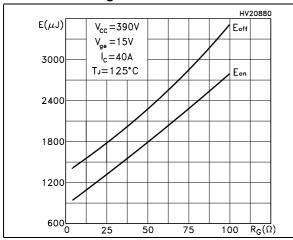
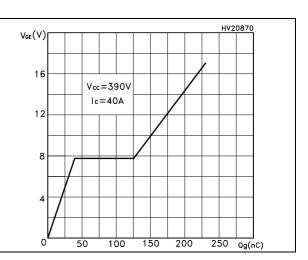
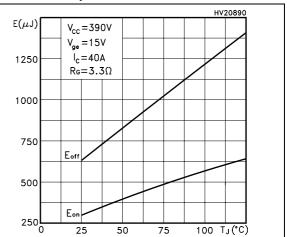
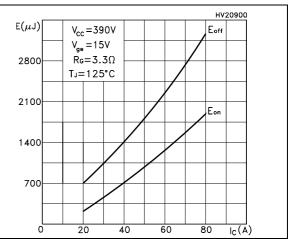
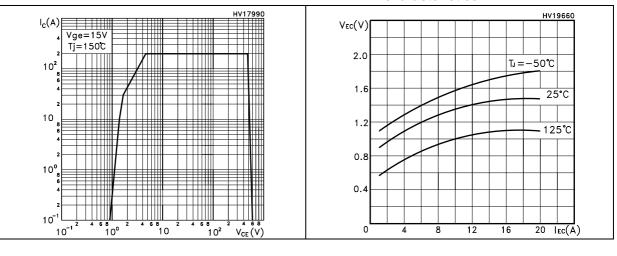



Figure 9. Gate charge vs gate-emitter voltage

Figure 11. Total switching losses vs temperature

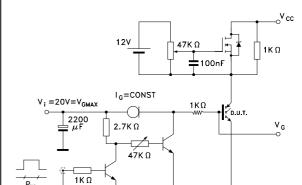

Figure 13. Total switching losses vs collector current

57

STGE50NC60VD

Figure 14. Turn-off SOA

Figure 15. Emitter-collector diode characteristics



SC09910

Test circuit 3

Figure 16. Test circuit for inductive load

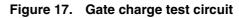
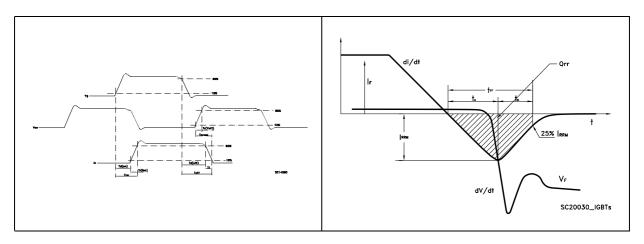
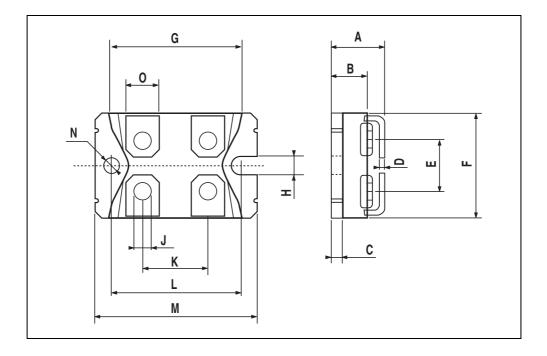



Figure 18. Switching waveform

. Pw


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11.8		12.2	0.466		0.480
В	8.9		9.1	0.350		0.358
С	1.95		2.05	0.076		0.080
D	0.75		0.85	0.029		0.033
E	12.6		12.8	0.496		0.503
F	25.15		25.5	0.990		1.003
G	31.5		31.7	1.240		1.248
н	4			0.157		
J	4.1		4.3	0.161		0.169
К	14.9		15.1	0.586		0.594
L	30.1		30.3	1.185		1.193
М	37.8		38.2	1.488		1.503
Ν	4			0.157		
0	7.8		8.2	0.307		0.322

ISOTOP MECHANICAL DATA

5 Revision History

Table 9.	Revision history

Date	Revision	Changes	
11-Oct-2006	1	First release	
24-Jul-2007	2	Internal schematic diagram has been updated Figure 1	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

